Biomechanics of Foot Orthoses and Therapeutic Shoes

가톨릭의대 박근영

Contents

- 1. General Overview
- 2. Ankle joint
- 3. Subtalar joint
- 4. Hindfoot (Heel)

General Overview

Foot Function

- √ Stable base of support
- ✓ Instantaneous adaptability to uneven terrain
- √ Shock attenuation
- √ Propulsion as a rigid lever
- ✓ Optimize the use of muscle energy

Goals of the Footwear

Flexibility
+
Stability
+
Motion Control

Allowance for Footwear

- √ Free movement of the toes
- ✓ Good fit
 - adequate length
 - adequate width
 - quarters of adequate height
 - shape to grip the heel
- ✓ Good contact with the surface of the foot
- ✓ Cradle the foot
- √ Absorb humidity
- ✓ Limit any increase in foot temperature
- ✓ Low weight

Foot Orthoses

- ✓ Goal of the orthoses application
 - functional (corrective): designed to maintain normal subtalar and midtarsal biomechanics
 - accommodative: used when deviation of the subtalar and midtarsal joints is rigid or when a local relief is required for a painful area
- Method of fabrication
 - molded, nonmolded
- √ Physical properties of materials
 - soft / flexible, semirigid, rigid

Physical Properties of Orthoses Material

- √ Soft / flexible
 - low-temperature polyethylene foams
 - : Plastazote, Pelite, Aliplast
 - Others
 - : ethylene vinyl acetate(EVA), Poron, PPT
- ✓ Semirigid
 - graphite laminates
 - polypropylene
 - polyethylene
- √ Rigid
 - acrylic plastics
 - acrylic plastic and carbon fiber-mesh composite

Ankle Joint

Ankle Joint

Calf Muscles Tightness

- ✓ Tight calf muscles increase the compensation of the STJ, causing more pronation
- ✓ They also cause more tension on the plantar aspect of the feet as they attach
- ✓ Stretching is necessary to increase the ROM

Heel Lifts

- ✓ Mechanism
- reduce compensatory pronation of STJ from heel rise through push-off
- shorten lever arm leads to less tension on plantar fasciae
- less tension to the arch by keeping in supinated position of the subtalar and midtarsal joint
- ✓ Indications
- tightness of triceps surae or Achilles tendon
- forefoot equinus
- plantar fasciitis
- heel pad atrophy
- bursitis under a heel spur
- limb length discrepancy

Heel Height

☐ Shoe only ☐ Heel cup

Arch support

Metatarsal padal

TCI

Standard heel height: 3/4-inch

Lee YH & Hong WH, 2005

Heel Height

 Significant changes in either lower back or lower limb EMG muscle activity with increasing heel height

> Lee et al, 1990; Stefanyshyn et al, 2000; Lee et al, 2001; Li et al, 2007

 ✓ Peroneus longus and lateral gastrocnemius are more fatigable in habitual wearers of high-heeled shoes

Gefen et al, 2002

Soft Heels/SACH

- √ Simulate ankle plantar flexion
- ✓ Reduce stress on ankle dorsiflexors
- ✓ Decrease flexion momentum at the knee
- ✓ Provide a maximum amount of shock absorption under the heel
- Anterior shin splints, patellofemoral syndrome, ankle fusion, prosthetic feet, solid AFO, ankle pain aggravated by movement such as arthritis

Beveled Heel

- ✓ Delay heel strike
- ✓ Decrease lever arm of ankle plantar flexion reducing the stress on ankle dorsiflexors
 - similar to being barefoot
- √ Simpler than SACH
- √ Similar to soft heel/SACH

Rocker Sole

- Walk with minimum motion of the joints of the foot
 - no extension of the MTP joints is required during the phase of forefoot weight bearing
- ✓ Reduce forefoot pressures by up to 50% compared to walking in flexible shoes
- ✓ Increase in loading time in the hindfoot and midfoot
- ✓ May decrease the magnitude of force required from the Achilles tendon to plantarflex the ankle
- ✓ Require caution for patients with impaired balance
 - diabetic neuropathy, elderly
- ✓ Hallux rigidus, metatarsalgia, forefoot plantar ulceration,
 Achilles tendinitis

Shoe Height

- √ Boots
- √ High-quarter shoes
 - prevents piston action during walking and back-and-forth sliding of the foot
 - provides medial-lateral stability at the ankle and subtalar joints
- √ Chukka
- ✓ Low(-quarter) shoes
 - oxford
 - do not restrict ankle or subtalar motion

Ankle Foot Orthosis Arizona AFO Three point pressure control system Baldwin brace C D

Subtalar Joint

Subtalar Joint Axis Axis And in sagittal plane 23° in transverse plane

Subtalar Joint

- √ Triplanar motion
- ✓ Pronation
 - Eversion + Abduction + Dorsiflexion
- √ Supination
 - Inversion + Adduction + Plantarflexion

Pronation vs. Supination

- ✓ Pronation
 - Cushioning mechanism
 - Absorb shock
 - Unstable
- ✓ Supination
 - Really supported
 - Stable platform

Tripod Effect

Insole Modifications

FIGURE 2. Placement of various pads and wedges on the 1/8" Plastazote.

- 1. 5th metatarsal head (localized by lipstick technique)
- 2. Neuroma pad
- Cuboid pad
 Lateral heel wedge
- 5. 1st metatarsal head (localized by lipstick technique)
 6. Sesamoid relief
 7. Metatarsal pad

- 8. Barton wedge
 9. Medial heel wedge

Medial Heel Wedge

- ✓ Mechanism
 - used to control hyperpronation and decrease excursion of tendons on the medial side of the ankle
- ✓ Indications
 - flexible valgus of the calcaneus (flat foot)
 - sinus tarsi pain

Muscle Activity in Flat-arched Foot Patients

- ✓ Increased activity of tibialis posterior, tibialis anterior, toe flexors, calf muscles in excessive pronation
- √ Peak EMG amplitude (compared to barefoot)

	Bracing	Taping
Tiabialis posterior	-22.0%	-33.1%
Peroneus longus	-34.0%	-29.4%
Tibialis anterior	-18.7%	-13.1%

Franettovich MM et al. J Sci Med Sport 2012

Invertor Vs. Evertor

Kirby's Method of STJ Axis Estimation

No subtalar rotation

Subtalar pronation

Subtalar supination

Lateral Heel Wedge

- ✓ Mechanism
 - elevation of the lateral heel decreases the medial drive on floor contact at heel strike, tipping the calcaneus into valgus
- ✓ Indications
 - used when flexible varus of the calcaneus is present
 - lateral ankle sprain
 - cavus foot

Therapeutic Shoes Modification

- √ Long rigid medial counter
- √ Thomas heel
- √ Reverse Thomas heel

Flares

- ✓ ½-inch-wide medial or lateral extensions or the sole or heel
- √ Acts as an outrigger
- ✓ Provides a wider base of support for the foot
- ✓ Partial foot amputation
 Fixed varus or valgus ankle deformity
 Unstable foot or ankle

Lateral Flare vs. Pronation

Nigg BM & Norlock M, 1987

Midsole

- Provides the structural integrity of athletic shoes
- Deteriorate after several months, even if not used
- ✓ Shock-absorbing capability in running shoes
 - deteriorate to 70% after 500 miles
- Made of EVA (ethyl vinyl acetate), polyurethane, or a combination with air cells

Midsole Density vs. Maximum Pronation

Frederick EC, 1989

University of California at Berkeley Laboratory (UCBL)

- √ 3 point system
 - 1. high lateral wall of 5th MT shaft (1/2 or 2/3)
 - sustentaculum tali
 - 3. lateral wall of hindfoot

- Designed to correct the flexible hindfoot and hold it in a neutral position
- Limits motion in the subtalar joint and helps prevent subfibular impingement

University of California at Berkeley Laboratory (UCBL) Supramalleolar Orthosis (SMO)

Valgus Deformity Control - SMO with a Medial Butress -

Hindfoot(Heel)

Insole

- Initially relatively stiff to small stresses
 - → less stiff in response to midrange stresses
 - → compaction of the material
 - → very stiff(little strain)
- Many soft materials (particularly thin insoles) are used beyond 50% compression
- Brodsky et al. (1988)
 - repeated shear and compression after 10,000 cycles
 - → loss of thickness: 0(PPT), 50%(Plastazote #1)

- 1. Poron (PPT)
- 2. Spenco
- 3. Plastazote #1
- 4. Plastazote #2
- 5. Soft Pelite

Insole replacement at regular intervals!

Heel Pad

√ Structure of heel pad-lateral view

Rome K. The Foot 1998

Heel Cup

- ✓ Mechanism
 - cushioning & heel elevation
 - preventing heel fat pad from spreading
- ✓ Indications
 - heel pad atrophy
 - plantar fasciitis

Heel Cup Effects

√ The difference in heel pad thickness during standing

	п	Increase in heel pad thickness, mean (mm)	95 % confidence interval	P-value
Bare foot vs Shoe only	45	2.19	1.69-2.69	< 0.001
Bare foot vs Shoe with cup*	15	3.57	2.56-4.29	< 0.001
Shoe only vs Shoe with cup*	15	1.53	0.63-2.23	= 0.002

^{*}Treatment group only.

Perhamre S et al. Scand J Med Sci Sports 2011

Heel Cup Effects

✓ Peak pressure during standing and running

	Peak pressure, mean (mmHg)			
	n	Shoe only	Shoe with cup	Difference (%)
Standing on heel Running	10 9	1407 1412	1056 1109	- 25 - 21

Perhamre S et al. Scand J Med Sci Sports 2011

Pad for Calcaneal Spur

√ Horseshoe heel pad

✓ Aperture pad

References

- Buonomo LJ, Klein JS, Keiper TL. Orthotic devices-Custom-made, prefabricated, and material selection. Foot Ankle Clin 2001; 6: 249-252
- Franettovich MM, Murley GS, David BS, Bird AR, A comparison of augmented low-Dye taping and ankle bracing on lower limb muscle activity during walking in adults with flat-arched foot posture. J Sci Med Sport 2012; 15: 8-13
- Janisse DJ, Janisse Erick. Shoe modification and the use of orthoses in the treatment of foot and ankle pathology. J Am Acad Orthop Surg 2008; 16: 152- 158
- Lee YH, Hong WH. Effects of shoe inserts and heel height on foot pressure, impact force, and perceived comfort during walking. Appl Ergon 2005; 36: 355-362
- Logue JD. Advances in orthotics and bracing. Foot Ankle Clin N Am 2007; 12: 215-232
- Nawoczenski DA, Janisse DJ. Foot orthoses in rehabilitation-what's new. Clin Sports Med 2004; 23:
- Oh-Park M. Use of athletic footwear, therapeutic shoes, and foot orthoses in physiatric practice. PM&R STARS 2001;15:569-585
- Perhamre S, Lundin F, Klassbo M, Norlin R. A heel cup improves the function of the heel pad in Sever's injury: effects on heel pad thickness, peak pressure and pain. Scand J Med Sci Sports 2011 [Epub ahead of print]
- Roberts ME, Gordon CE. Orthopedic footwear- Custom-made and commercially manufactured footwear. Foot Ankle Clin 2001; 6: 243-247
- Rome K. Mechanical properties of the heel pad: current theory and review of the literature. The Foot 1998; 8: 179-185
- Tyrrell W, Carter G. Therapeutic footwear-A comprehhensive guide. Churchill Livingstone Elsevier, 2009.