# Growth and development of foot 

$$
\begin{gathered}
\text { 가톨릭의대 } \\
\text { 인천성모병원 } \\
\text { 장대현 }
\end{gathered}
$$

## Growth and development of foot

- Growth
- Changes in size
- Development
- Increases and changes in physical, intellectual, emotional, social..... skills


## Windows of achievement for six gross motor milestones



## Growth and development of foot

- Nature
- Heredity
- Physical make-up
- Nurture
- Environment
- Influences such as
- Height/Weight/Gender
- Nutrition
- Footwear
- First walking age



## Growth and development of foot

- Foot
- Accommodate irregularities of the ground
- Maintain balance
- Support weight
- Shock absorber
- Generate forward movement

More dynamic
Energy expenditure Body protection

- Transmit propulsive forces
- Proprioception


## Contents

- Prenatal development
- Ossification
- Foot of Newborn and infant
- Postnatal development
- Length
- Longitudinal arch


## Prenatal development

- 28 days: Leg buds appear


PHYS THER. 1988; 68:1831-1839.

## Ossification



## Ossification

|  | Appearance | Union |
| :--- | :--- | :--- |
| Metatasals and phalanges | $9-15$ week fetus <br> $-3-5$ years |  |
| Calcaneus <br> - posterior surface | 5 month fetus <br> $-6-8$ years | $6-7$ month fetus <br> -8 years |
| Talus | 9 month fetus |  |
| Cuboid | $4-20$ month |  |
| Lateral cuneiform | $2-3$ years |  |
| Intermediate cuneiform | $2-3$ years |  |
| Medial cuneiform | $2-5$ years |  |
| Navicular |  |  |

## Foot of Newborn and Infant

- Soft and elastic (flexibility)
- Triangular shape
- Forefoot adduction
- More dorsiflexion ROM
- Lager size in relation to body weight
- Mid-foot pat pad
- Absence of a visible longitudinal arch

Evaluation of early walking patterns from plantar pressure distribution measurements. First year results of 42 children
Comparison of the absolute pressure distribution parameters within the first year $(n=42)$

| First exam | +3 Months |  | +6 Months |  | +9 Months |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D |

Fat pad and large size of foot increase the loaded area of the plantar surface

IOICIOOL

- Hallux

| 14.2 | 2.0 |  |
| :--- | :--- | :--- |
| 3.6 | 0.7 | K |

10.0

1

## Lengths of growing foot

- The average length is 7 to 10 cm at birth.
- The average width is one half its length at birth.
- Half of adult is achieved by the first year.
- By age 10 years, girls reach
 $90 \%$, whereas boys reach 82\%


## Lengths of growing foot


K. Bosch et al./Gait \&' Posture 32 (2010) 564-571

## Longitudinal arch

- Debatable
- Arch index
$=$ midfoot contact area/total foot contact area

Static and dynamic foot characteristics in children aged $1-13$ years: A cross-sectional study

Development of healthy children's feet-Nine-year results of a longitudinal investigation of plantar loading patterns


Gait \&' Posture 32 (2010) 564-571


Gait \&' Posture 35 (2012) 389-394

## Preliminary normative values for foot loading parameters of the developing child



## Development of plantar pressure

- Increased loading on forefoot and heel
- Decreased loading on midfoot
- Fat pad shifts towards the heel and th forefoot
=> More controlled roll-over process


## Roll-over process

## More dynamic gait and running Energy expenditure

Heel Rocker

Heel Rocker: Using the heel as the fulcrum (rod designation motion axis), the foot rolls into plantar flexion. Pretibial muscles, as they decelerate the foot drop, also draw the tibia forward. Limb progression preserved.

## Ankle Rocker

Figure 3.25 Ankie Rocker: With the ankie as the fulcrum (rod designating the axis of motion) the tibia (and whole limb) rolls forward in response to momenfum (arrow). The rate ot tibial progression is decolerated by the soleus muscle.

Forefoot Rocker
Figure 3.26 Forefoot Rocker: Tibial progression (arrow) is continued ower the foretoot rocker (rod as the axis). Both gastrocnemius and soleus act vigorously to decelerate the rate of tiblal advancement.

## Plantar pressure

- Three types at an initial walking
- Initial forefoot-contact
- Flat foot-contact
- Initial heel contact



## Changes in foot-function parameters during

 the first 5 months after the onset of independent walking: a longitudinal follow-up study

| (a) |  | Foot Roll-off Patterns |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 100 \% \\ 75 \% \\ 50 \% \\ 25 \% \\ 0 \% \end{array}$ |  | $H$ |  |  |  |  |  |  |  |
| $\square \mathrm{IHC}$ | 55 | 24 | 33 | 43 | 58 | 62 | 62 | 67 | 70 |
| $\square F F C$ |  | 41 | 44 | 33 |  | 33 |  | 31 | 26 |
| $\square \mathrm{IFC}$ | 6052 | 34 | 23 | 25 | 7 | 5 | 11 | 2 | 4 |

## Evaluation of early walking patterns from plantar pressure distribution measurements. First year results of 42 children



Fig. 3. Example of a child (\#43) with a clear development of the arch after 6 months and even more so after 1 year. The gait line shows a smooth pattern after 1 year.


## Foot morphology of normal, underweight and overweight children

- 1450 boys 1437 girls (2 - 14 years)
- Flat feet
- Slender feet
- Robust feet
- Short feet
- Long feet


International Journal of Obesity (2008) 32, 1068-1075

## Conclusion

Change of shape and function of foot

Growth and develonment of font

## Physiologic and pathologic (intervention timing)

Nature and Nurture

Wide inter-individual variability

