Metatarsus adductus, Skew foot, Club foot

성균관대학교 삼성창원병원 장 현 정

Metatarsus adductus

Epidemiology and Etiology

- 0.1 12% with higher number for multiple birth
- Deformation and compression from intrauterine crowding or positioning

FIGURE 2. Metatarsus adductus: medial deviation of all metatarsals with normal relationship between talus and calcaneus.

• On inspection

Toe angles abruptly toward midlin

C-shaped lateral foot border

Prominent styloid process of 5th n

Splay between great and 2nd toes

Deep skin cleft at medial midfoot

• "V"-finger test

FIGURE 4. "V"-finger test.

• Flexibility

Fixing hindfoot in neutral position

- → Gently manipulating the midfoot and forefoot to more lateral position
- Classification
- \rightarrow Flexible / semiflexible or semirigid / rigid

Radiographic evaluation

- Not imperative (in newborn foot)
- Difficult to reproduce, esp. infant & toddler foot
- Age & flexibility : better prognosticating factor
- Confirm presence of complex deformities or presence of rearfoot compensation and should still be obtained

Radiographic evaluation

- Valuable, diagnostic, prognosticating tool
- Initial AP radiograph

- Based on severity but controversial
 - Some authors advocate only observation without active intervention for mild case
 - Others intervene early in all severe cases or by 2 months of age, if the condition is not resolved
 - Other authors recommend treatment as soon as possible, especially in moderate to severe cases

- Based on natural course of the condition
 - More conservative approach seems reasonable
 - 85-90% resolve by 1 year of age
 - 87% resolved by 6 years of age, with only about

4 % remaining at age 16

- Central theme of treatment
- 1. Early diagnosis
- 2. Early appropriate level of treatment aimed at complete reduction of the deformity
- 3. Prevention
- ★ Flexibility & age

• Mild (flexible, passively correctable)

Only parental reassurance

Daily passive strechting

(15-20 minutes / day over

• Moderate (semi-flexible, reducible)

Stretching exercise at every diaper change

Aggressive and early use of passive stretching

Serial cast immobilization

- Severe (rigid)
 - Excessive compensation at level of mediotarsal joint
 - Development of bunions, hammertoes, and others

Serial casting and bracing

Surgical treatment

• Serial casting

Helpful in children under 1 year of age

Not to place the hindfoot in valgus

- \rightarrow Create a skew foot deformity
- Surgery

More rigid persistent deformity after age of 5

- Long-standing untreated or undertreated metatarsus adductus
 - Formation of skewfoot deformity
 - Very significant symptoms and less successful treatment by nonoperative means

Skewfoot

Terminology

- Rare deformity
- S-shaped foot, serpentine foot, Z-foot deformity
- Forefoot adduction and hindfoot valgus

Classification

- Congenital idiopa
 - Supple deformity,
 - Resolve with time
- Associated with s
 - Diastrophic dwarfi
 - Connective tissue
 - Rigid and difficult t

B

Classification

- Neurogenic
 - Cerebral palsy, Myelodysp
 - Due to muscular imbalanc
 - Faster progression
- latrogenic

- Inappropriate casting or surgical intervention in club foot or metatarsus adductus

- From plantar aspect
- Weight bearing
- Flexibility
- Hip & knee ROM
- "V-finger test" : not helpful

Radiologic assessment

• AP and lateral radiograph with weight bearing

- Controversial : no therapeutic escalation
- Natural history : unknown
- Important to evaluate clinical response to treatment
- Measures of therapy
 - Manipulation
 - Serial casting
 - Orthoses
 - Surgical management

- ★ Age and etiology
- Mild and flexible form

Cast immobilization and shoe therapy

Severe form

Surgical intervention

- Underlying neuromuscular condition
- Affected on daily basis because of deformity

Club Foot

Termiology

- Talipes equinovarus
- Main component
 - Adduction & supination of forefoot
 - Varus of hindfoot
 - Equinus of subtalar joint
 - Internal rotation of leg

Pathoanatomy

- Embryological and fetal specimen
- 1. Adduction & supination of forefoot
- 2. Anterior extrusion of talus with increased plantar and medial inclination of talar neck
- 3. Medial subluxation of navicular toward madial malleolus
- 4. Medial subluxation of cuboid in relation to anterior end of os calcis

Epidemiology

- One of the most common congenital deformity of the musculoskeletal system
- Incidence : 1-4 / 1,000 live births
- $0.6 6.8 / 1,000 \rightarrow$ hereditary factor
- Higher incidence in male
- 30-50% : only one side involved

Classification

Postural

Benign, resolve completely with stretching & cast

• Idiopathic

True congenital clubfoot of variable severity

• Neurogenic

As seen in spina bifida

• Syndromic

Associated with other anomalies, often quiet rigid

Pathogenesis

- Mechanical factors such as intrauterine molding and oligohydroamnios
- Early developmental arrest of foot
- Primary germ plasm defect in talus
- Primary dislocation of talo-navicular joint
- Muscle imbalance d/t developmental neurological deficit
- Medical retraction fibrosis

• On inspection

"Down and in" appearance

Smaller foot

- Flexible, softer heel due to hypoplastic calcaneus
- Concave medial border with deep skin furrow
- Highly convex lateral border

• On testing

Pronounced tightness of Achilles tendon with very little dorsiflexion

Radiographic evaluation

Roughly parallel axes of talus and calcaneus

FIGURE 7. Radiographic projection of clubfoot. Note parallel axes of talus and calcaneus.

★ Started as soon as possible after birth

• Extrinsic (supple) type

Positional or soft tissue deformity

Treated by serial casting

• Intrinsic (rigid) type

Manual reduction is impossible

Eventually require surgery

• Range of motion maintanence

By passive exercise into dorsiflexion & eversion

• Plaster casting

Attempt on all clubfoot as soon as practical Initially changed at semiweekly to weekly intervals Continue until deformity responds and corrected fully

• Surgery

Usually when child is 6-9 months of age Goal : stable, "platform-like" position for future ambulation

Problems (1) leaving residual deformity

(2) malcorrection

(3) overcorrection \rightarrow worsen problem

• Persistent deformity into adulthood

Unstable ankle, lateral sprain, difficulty with weight bearing

Where are we going in 21th century?

- 1) In the future, better understanding of pathogenesis of deformity \rightarrow A role for gene therapy in prevention?
- 2) In the future, intrauterine treatment that result in plantigrade foot at delivery?
- 3) Better clinical technique and better imaging modality \rightarrow accurately compare 'apples to apples'
- 4) Evidence-based medicine \rightarrow to determine which modality produce optimal results

Where are we going in 21th century?

- 5) Patients will play more important role in determining optimal treatment outcome?
- 6) Use of platelet-derived factors for ligament healing \rightarrow Role in treatment of clubfoot?
- 7) New therapy modality which soften and lengthen tight ligaments and muscles?
- 8) Better orthosis which overcome noncompliance?
- 9) Cost of applying these advances?

Thank you for attention

