Deformity and Pain in Foot of Neuromuscular Disease

CHA 의과학대학 재활의학과 김 민 영 (2012.11.10 제4회 대한발의학회)

Neuromuscular Diseases & Foot

- **<u>Deformity</u>** : almost
- Pain : infrequent
- Non-ambulatory, <u>Ambulatory</u>

Neuromuscular Diseases in Children

-Genetic problems frequently associated

- Brain
 - injury or defined lesion in nervous system
 - developmental disdorder
- Spinal cord
 - congenital lesion (meningomyelocele,..)
- Peripheral nervous system
 motor & sensory : hereditory
- Muscle disease

Muscle Disease

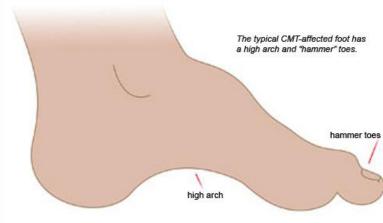
- Duchenne muscular dystrophy (DMD)
 - 1 / 3,500 Male birth
 - Invariable equinus deformity in DMD from 13 y/0
 - KAFO in children with DMD: >2/3 families were satisfied
- Metabolic myopathy

M/16, DMD

M/19, Glycogen storage disease

Peripheral nervous disease

- Guillain-Barré disease
 - weakness development from distal lower extremities
- (Gupta et al. Disabil Rehabil 2010)
 - acute peripheral polyneuropathy
 - affects motor, sensory, and autonimic ns. & spinal roots
 - early childhood/elderly
 - subject: 69 patients
 - residual deficits: 10% need walking aid at 2 years after onset
 - neuropathic pain (80%): limbs & back
 - foot drop (60%): almost bilateral use AFO
 - \rightarrow need of AFO 34% at 1 year after



Early pes cavus in a 5-year-old child with CMT1A who scored an FPI of -5 on the right foot and -7 on the left foot.

Foot Posture Index : cavus =-12~-1/ normal = 0 ~ 5 / planus = 6~12

Peripheral nervous disease

- Charcot-Marie-Tooth (CMT) (hereditary motor-sensory neuropathy type I)
 - 1/2,500 births
 - heterogenous causes
 - recessive genes FGD4, PRX, MTMR2, SBF2, SH3TCs, GDAP1 : present early foot deformities with variable delay development (Baets, Brain 2011)
 - predominantly distal loss of strength and muscle atrophy in the leg
 - cavus

CMT & pain

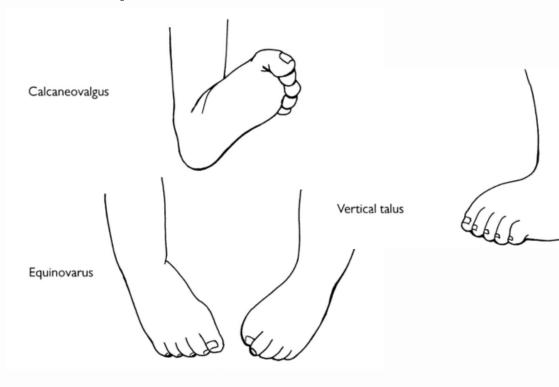
- (Blyton et al. Neurology, 2011)
 - Type 1A: Autosomal dominant, large duplic. of chr. 17p
 - 81 children (mean 8.3 y/o, 2-16 y/o)
 - cramp
 - painful involuntary contraction of skeletal muscle
 - calf cramp in 32%, 1 child in toe
 - calf cramp associtated condition
 - older age
 - hand tremor
 - stronger foot inversion, eversion, dorsiflexion, plantarflexion
 - proposed mechanism of cramp
 - abnormal excitability of motor nerve terminals

Peripheral nerve, dorsal root, spinal cord

- Friedreich's ataxia
 - degenerative atrophy of the posterior columns of spinal cord: DRG, ppn, post.columm
 - autosomal recessive
 - most common earl-onset hereditary ataxia in Caucasians
 - ataxia, down going Babinski, areflexia
 - first symptom usually noticed around puberty
 - progressive limb ataxia after 10 ~ 15 years
 - scoliosis and pes cavus

Spinal cord level disease

- Spinal muscular atrophy
 - autosomal recessive
 - 1/6,000 10,000
 - $-\alpha$ motor neurons of ant. horn cell selectively dystroyed
 - type 2 onset 6 -18 months, type 3 >18 months
 - proximal and trunk weakness
- Meningomyelocele
- Spinal cord injury
- Poliomyelitis



Level of lesion in spinal cord

• Foot manifestations are vary according to level of spinal cord lesion

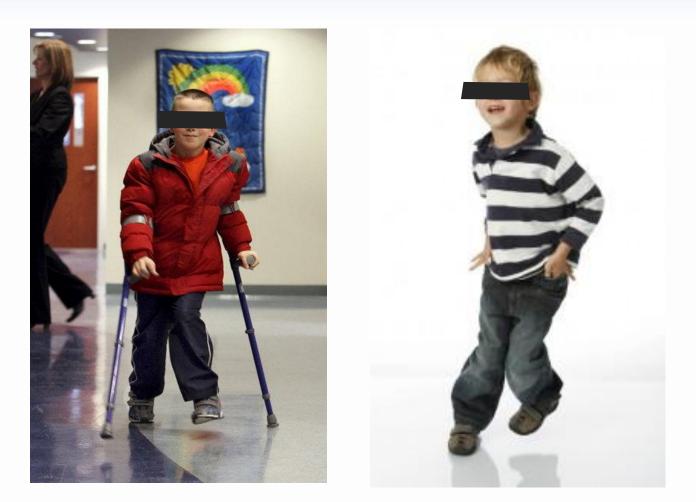
Cavus foot

- Etiology
 - CNS
 - Especially hemiplegia; spastic tibialis posterior
 - Spinal : Friedreich's ataxia
 - Myelodysplasia, syringomyelia, poliomyelitis, tetherd cord
 - Peripheral nerves
 - Guillain-Barre syndrome
 - HSMN, CMT

Cavovarus deformity

- Most common form
- Due to muscle imbalance
- Mild increase calcaneal pitch + forefoot plantarflexion deformity
- May be observed in CMT
 - CP
 - Friedreich's ataxia
 - Spinal dysraphism
 - poliomyelitis
- Toes clawing

Cavus foot


- Management

 mainly orthotics
- Orthotics
 - For mild, non-progressive
 - Lateral forefoot and hindfoot posting
 - Large toe box shoes

Intervention for increasing ankle ROM in patients with neuromuscular disease (Cochrane)

- To resolve equinus
- RCT design
- 2 independent papers, 149 subjects
- CMT type 1A
 - no statistically or clinically significant differences for night splinting
- DMD
 - prednisolone use resulted improvements in strength and fucntion, but no difference in ROM

Brain-origin problems in foot & gait

Autism

- Calhoun et al. Clin Biomech 2011:26
 - 12 autism children: 22 control
 - reduced plantarflexor moments and increased dorsiflexion angles (hypotonia related?), decreased hip extensor moments
- Barrow et al. J Child Neurol 2011: 26
 - 954 ambulatory children
 - Autistic spectrum disorder
 - Persistent toe walking: 20.1%
 - Tight heel cords: 12.0%
 - Asperger syndrome
 - Persistent toe walking: 10.0%
 - Tight heel cords: 3.0%

Brain level problems

Cerebral palsy

- Brain lesion, non-progressive
- Typology
 - Spastic type
 - bilateral
 - unilateral
 - Dystonic type
 - Ataxic type
 - Choreoathetoid type

(Bax M, Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy. *Dev Med Child Neurol*. 2005;47:571-576)

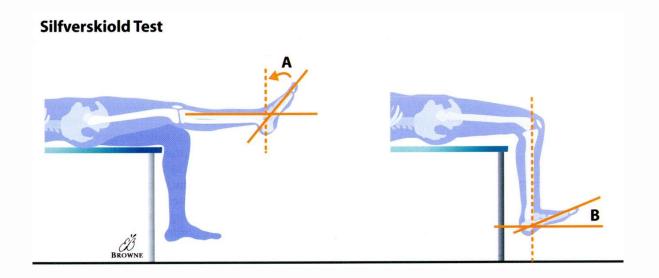
Global Delayed development

- Delay in ≥ 2 domains among gross/fine motor, speech/language, cognition, social/personal, ADL
- Variable degree of gross motor involvement
- Genetic syndromes

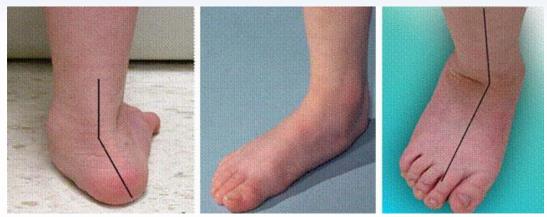
 Down syndrome, autism,...
- Hypotonia & other tone
 presentation

Delayed motor development

• Hypotonia - trunk


Equinus

- Spastic bilateral type
- First deformity of spastic CP that gains attention
- Reason
 - Plantar flexor is 5 ~ 6 times stronger than dorsiflexor
 - Spasticity of total body, stretch reflex



Equinus of Ankle

- Measure
 - Length of soleus : with knee flexion
 - Length of gastrocnemius : with knee extension

Ankle Valgus

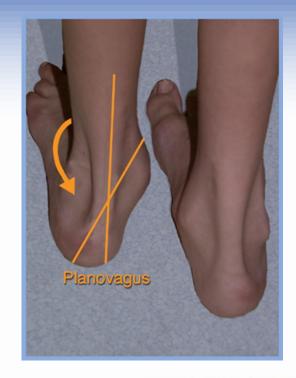
- External rotation planovalgus collapse
- Due to eccentric loading of ankle joint, partial growth arrest of lateral aspect of ankle joint
- Cause fibula to be shorter
- Complex rotational malalingnment of talus
- Gets worse during adolescent growth

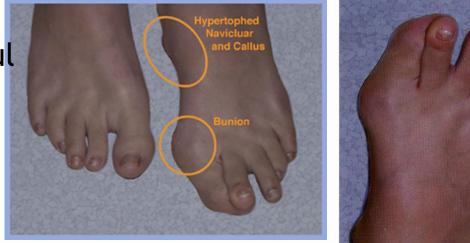
Equinovarus

• Severe quadriplegia & hemiplegia

- Tibialis anterior & posterior
 - : strongly pull

Planovalgus


- Most common deformity
- Multifactorial etiology
 - High force enviornment
 - Toe-walking


- As collapse, navicular & head of talus become major weightbearing areas
- Often starts with toe-walking : high force on subtalar area

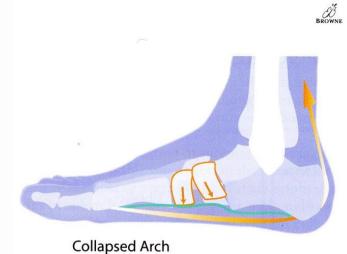
Planovalgus

- As the child heavier, the force increases
 - joints start to collapse into external rotation, valgus \rightarrow decreases the plantar flexion ability

- Often become painful
- **Developing bunion** •

Severe case of Planovalgus

Calluces from chronic posture


Flat foot

- Most hypotonic children
- Pronation
 - most frequent compensation for soft tissues or osseous deformities

Hypermobile Joints

Pradder-Willi syndrome

- Rare genetic disorder
 chromosome 15(q13-15)
- Pronation of feet
- Low tone, short stature

Down syndrome

- flat pronated feet
 - decreased ankle ROM
 - wide base of gait
 - inadequate heel contact
 - poor foot clearance during swing
- common foot conditions
 - hallux abduction, valugus
 - plantar fasciitis
 - clawing toes
 - shoes irritation in narrow shoes

